Photoactivatable Liposomes for Blue to Deep Red Light-Activated Surface Drug Release: Application to Controlled Delivery of the Antitumoral Drug Melphalan.

Fiche publication


Date publication

juillet 2023

Journal

Bioconjugate chemistry

Auteurs

Membres identifiés du Cancéropôle Est :
Dr FRISCH Benoit, Dr HEURTAULT Béatrice, Dr KICHLER Antoine, Dr SPECHT Alexandre


Tous les auteurs :
Brion A, Chaud J, Klimezak M, Bolze F, Ohlmann L, Léonard J, Chassaing S, Frisch B, Kichler A, Heurtault B, Specht A

Résumé

Liposome-based nanoparticles able to release, via a photolytic reaction, a payload anchored at the surface of the phospholipid bilayer were prepared. The liposome formulation strategy uses an original drug-conjugated blue light-sensitive photoactivatable coumarinyl linker. This is based on an efficient blue light-sensitive photolabile protecting group modified by a lipid anchor, which enables its incorporation into liposomes, leading to blue to green light-sensitive nanoparticles. In addition, the formulated liposomes were doped with triplet-triplet annihilation upconverting organic chromophores (red to blue light) in order to prepare red light sensitive liposomes able to release a payload, by upconversion-assisted photolysis. Those light-activatable liposomes were used to demonstrate that direct blue or green light photolysis or red light TTA-UC-assisted drug photolysis can effectively photorelease a drug payload (Melphalan) and kill tumor cells in vitro after photoactivation.

Référence

Bioconjug Chem. 2023 07 1;: