Myo-InositolTrisPyroPhosphate treatment leads to HIF-1alpha suppression and eradication of early hepatoma tumors in rats.

Fiche publication


Date publication

mars 2011

Auteurs

Membres identifiés du Cancéropôle Est :
Dr EGLY Jean-Marc, Pr LEHN Jean-Marie, Pr MARESCAUX Jacques, Pr SOLER Luc


Tous les auteurs :
Aprahamian M, Bour G, Akladios CY, Fylaktakidou K, Greferath R, Soler L, Marescaux J, Egly JM, Lehn JM, Nicolau C

Résumé

Myo-inositol trispyrophosphate (ITPP), a synthetic allosteric effector of hemoglobin, increases the regulated oxygen-releasing capacity of red blood cells (RBCs), leading to suppression of hypoxia-inducible factor 1alpha (HIF-1alpha) and to down-regulation of hypoxia-inducible genes such as vascular endothelial growth factor (VEGF). As a consequence, tumor growth is markedly affected. The effect of weekly intravenous injection of ITPP on an orthotopic, syngenic rat hepatocellular carcinoma (HCC) model was compared to that for untreated animals and animals subjected to conventional Doxorubicin chemotherapy. The longitudinal examination of HCC was performed by microCT imaging, and the cellular and molecular changes were evaluated by histology and Western blotting analysis of HIF-1alpha, VEGF, and caspase-3 gene expression in the tumor and in the surrounding liver. Hematologic impact was evaluated by blood cell-count measurement and determination of P50 (oxygen partial pressure for a 50 % oxygen saturation of hemoglobin). The HCC evaluation by microCT revealed a high potency of ITPP for tumor growth inhibition, thus allowing long-term survival and even cure of almost all the treated animals. The P50 value of hemoglobin in RBCs underwent a shift of 30 % following ITPP injection. Under these conditions, HIF-1alpha activity was strongly decreased, VEGF expression was down-regulated, and apoptosis was induced in HCC and surrounding liver cells, as indicated by Caspase-3 expression. ITPP did not affect hematologic parameters during treatment. The observations of in vivo tumor eradication suggest a significant clinical potential for ITPP in cancer therapy.

Référence

Chembiochem. 2011 Mar 21;12(5):777-83