A fully enzymatic method for site-directed spin labeling of long RNA.

Fiche publication


Date publication

septembre 2014

Auteurs

Membres identifiés du Cancéropôle Est :
Dr KIEFFER Bruno


Tous les auteurs :
Lebars I, Vileno B, Bourbigot S, Turek P, Wolff P, Kieffer B

Résumé

Site-directed spin labeling is emerging as an essential tool to investigate the structural and dynamical features of RNA. We propose here an enzymatic method, which allows the insertion of a paramagnetic center at a specific position in an RNA molecule. The technique is based on a segmental approach using a ligation protocol with T4 RNA ligase 2. One transcribed acceptor RNA is ligated to a donor RNA in which a thio-modified nucleotide is introduced at its 5'-end by in vitro transcription with T7 RNA polymerase. The paramagnetic thiol-specific reagent is subsequently attached to the RNA ligation product. This novel strategy is demonstrated by introducing a paramagnetic probe into the 55 nucleotides long RNA corresponding to K-turn and Specifier Loop domains from the Bacillus subtilis tyrS T-Box leader RNA. The efficiency of the coupling reaction and the quality of the resulting spin-labeled RNA were assessed by Mass Spectrometry, Electron Paramagnetic Resonance (EPR) and Nuclear Magnetic Resonance (NMR). This method enables various combinations of isotopic segmental labeling and spin labeling schemes, a strategy that will be of particular interest to investigate the structural and dynamical properties of large RNA complexes by NMR and EPR spectroscopies.

Référence

Nucleic Acids Res. 2014 Sep;42(15):e117