Advanced Platelet Lysate Aerogels: Biomaterials for Regenerative Applications.

Fiche publication


Date publication

février 2024

Journal

Journal of functional biomaterials

Auteurs

Membres identifiés du Cancéropôle Est :
Dr LAVALLE Philippe


Tous les auteurs :
Tibourtine F, Canceill T, Marfoglia A, Lavalle P, Gibot L, Pilloux L, Aubry C, Medemblik C, Goudouneche D, Dupret-Bories A, Cazalbou S

Résumé

Human platelet lysate (HPL), rich in growth factors, is increasingly recognized for its potential in tissue engineering and regenerative medicine. However, its use in liquid or gel form is constrained by limited stability and handling difficulties. This study aimed to develop dry and porous aerogels from HPL hydrogel using an environmentally friendly supercritical CO-based shaping process, specifically tailored for tissue engineering applications. The aerogels produced retained their three-dimensional structure and demonstrated significant mechanical robustness and enhanced manageability. Impressively, they exhibited high water absorption capacity, absorbing 87% of their weight in water within 120 min. Furthermore, the growth factors released by these aerogels showed a sustained and favourable biological response in vitro. They maintained the cellular metabolic activity of fibroblasts (BALB-3T3) at levels akin to conventional culture conditions, even after prolonged storage, and facilitated the migration of human umbilical vein endothelial cells (HUVECs). Additionally, the aerogels themselves supported the adhesion and proliferation of murine fibroblasts (BALB-3T3). Beyond serving as excellent matrices for cell culture, these aerogels function as efficient systems for the delivery of growth factors. Their multifunctional capabilities position them as promising candidates for various tissue regeneration strategies. Importantly, the developed aerogels can be stored conveniently and are considered ready to use, enhancing their practicality and applicability in regenerative medicine.

Mots clés

advanced therapy medicinal products (ATMPs), aerogel, biomaterials, human platelet lysate, supercritical carbon dioxide, tissue repair

Référence

J Funct Biomater. 2024 02 19;15(2):