Transcription induces context-dependent remodeling of chromatin architecture during differentiation.

Fiche publication


Date publication

décembre 2023

Journal

PLoS biology

Auteurs

Membres identifiés du Cancéropôle Est :
Dr SEXTON Thomas


Tous les auteurs :
Chahar S, Ben Zouari Y, Salari H, Kobi D, Maroquenne M, Erb C, Molitor AM, Mossler A, Karasu N, Jost D, Sexton T

Résumé

Metazoan chromosomes are organized into discrete spatial domains (TADs), believed to contribute to the regulation of transcriptional programs. Despite extensive correlation between domain organization and gene activity, a direct mechanistic link is unclear, with perturbation studies often showing little effect. To follow chromatin architecture changes during development, we used Capture Hi-C to interrogate the domains around key differentially expressed genes during mouse thymocyte maturation, uncovering specific remodeling events. Notably, one TAD boundary was broadened to accommodate RNA polymerase elongation past the border, and subdomains were formed around some activated genes without changes in CTCF binding. The ectopic induction of some genes was sufficient to recapitulate domain formation in embryonic stem cells, providing strong evidence that transcription can directly remodel chromatin structure. These results suggest that transcriptional processes drive complex chromosome folding patterns that can be important in certain genomic contexts.

Référence

PLoS Biol. 2023 12 4;21(12):e3002424