Circulating hyaluronic acid signature in CAP and ARDS - the role of pneumolysin in hyaluronic acid shedding.

Fiche publication


Date publication

décembre 2022

Journal

Matrix biology : journal of the International Society for Matrix Biology

Auteurs

Membres identifiés du Cancéropôle Est :
Dr BARRETO Guillermo


Tous les auteurs :
Sauer A, Seeliger B, Jandl K, Erfinanda L, Wilhelm J, Alexopoulos I, Baal N, Birnhuber A, David S, Welte T, Barreto G, Gaertner U, Kwapiszewska G, Seeger W, Kuebler WM, Schaefer L, Wygrecka M,

Résumé

Shedding of hyaluronan (HA), the component of endothelial cell (EC) glycocalyx, has been associated with acute lung injury. HA degradation allows plasma proteins and fluid to penetrate across the vascular wall leading to lung edema formation and leukocyte recruitment. Here, we analyzed sHA levels and size in patients with community-acquired pneumonia (CAP) and acute respiratory distress syndrome (ARDS), correlated them to disease severity, and evaluated the impact of pneumolysin (PLY), the Streptococcus pneumoniae (S.p.) exotoxin, on HA shedding from human pulmonary microvascular EC (HPMVEC). sHA levels were elevated in CAP and ARDS and correlated with the CRB65 severity score and with markers of inflammation (interleukin-6), EC activation (E-selectin), and basement membrane destruction (collagen IV). Furthermore, sHA levels were associated with an increase in 28-day mortality. Small and large sHA fragments were detected in plasma of most severe CAP or ARDS patients, and the presence of large sHA fragments was accompanied by the elevated levels of circulating collagen IV. In vitro, PLY induced sHA release from HPMVEC. This effect was dependent on reactive oxygen species (ROS) production and was not associated with endothelial barrier dysfunction. Conversely, HA shedding was impaired following HPMVEC infection with a S.p. PLY-deficient mutant. Our study identifies association between the severity of CAP and ARDS and the levels and size of sHA in plasma. It links sHA levels with, inflammation, EC activation status and basement membrane disassembly in ARDS and provides insights into the mechanism of HA shedding during infection.

Mots clés

Acute respiratory distress syndrome, Community-acquired pneumonia, Endothelial cells, Hyaluronan, Pneumolysin

Référence

Matrix Biol. 2022 12;114:67-83