Preliminary Study of New Gallium-68 Radiolabeled Peptide Targeting NRP-1 to Detect Brain Metastases by Positron Emission Tomography.

Fiche publication


Date publication

novembre 2021

Journal

Molecules (Basel, Switzerland)

Auteurs

Membres identifiés du Cancéropôle Est :
Pr BARBERI-HEYOB Muriel, Dr CHOULIER Laurence, Dr DUMAS Dominique, Dr FROCHOT Céline, Dr THOMAS Noémie


Tous les auteurs :
Moussaron A, Jouan-Hureaux V, Collet C, Pierson J, Thomas N, Choulier L, Veran N, Doyen M, Arnoux P, Maskali F, Dumas D, Acherar S, Barberi-Heyob M, Frochot C

Résumé

Due to their very poor prognosis and a fatal outcome, secondary brain tumors are one of the biggest challenges in oncology today. From the point of view of the early diagnosis of these brain micro- and macro-tumors, the sensitivity and specificity of the diagnostic tools constitute an obstacle. Molecular imaging, such as Positron Emission Tomography (PET), is a promising technique but remains limited in the search for cerebral localizations, given the commercially available radiotracers. Indeed, the [F]FDG PET remains constrained by the physiological fixation of the cerebral cortex, which hinders the visualization of cerebral metastases. Tumor angiogenesis is recognized as a crucial phenomenon in the progression of malignant tumors and is correlated with overexpression of the neuropilin-1 (NRP-1) receptor. Here, we describe the synthesis and the photophysical properties of the new gallium-68 radiolabeled peptide to target NRP-1. The KDKPPR peptide was coupled with gallium-68 anchored into a bifunctional NODAGA chelating agent, as well as Cy5 for fluorescence detection. The Cy5 absorbance spectra did not change, whereas the molar extinction coefficient (ε) decreased drastically. An enhancement of the fluorescence quantum yield (φ) could be observed due to the better water solubility of Cy5. [Ga]Ga-NODAGA-K(Cy5)DKPPR was radiosynthesized efficiently, presented hydrophilic properties (log D = -1.86), and had high in vitro stability (>120 min). The molecular affinity and the cytotoxicity of this new chelated radiotracer were evaluated in vitro on endothelial cells (HUVEC) and MDA-MB-231 cancer cells (hormone-independent and triple-negative line) and in vivo on a brain model of metastasis in a nude rat using the MDA-MB-231 cell line. No in vitro toxicity has been observed. The in vivo preliminary experiments showed promising results, with a high contrast between the healthy brain and metastatic foci for [Ga]Ga-NODAGA-K(Cy5)DKPPR.

Mots clés

NRP-1, brain metastases, fluorescence, peptide, radiolabeling, targeting

Référence

Molecules. 2021 Nov 30;26(23):