The 3'UTR-derived sRNA RsaG coordinates redox homeostasis and metabolism adaptation in response to glucose-6-phosphate uptake in Staphylococcus aureus.

Fiche publication


Date publication

novembre 2021

Journal

Molecular microbiology

Auteurs

Membres identifiés du Cancéropôle Est :
Dr ROMBY Pascale


Tous les auteurs :
Desgranges E, Barrientos L, Herrgott L, Marzi S, Toledo-Arana A, Moreau K, Vandenesch F, Romby P, Caldelari I

Résumé

Staphylococcus aureus RsaG is a 3' untranslated region (3'UTR) derived sRNA from the conserved uhpT gene encoding a glucose-6-phosphate (G6P) transporter expressed in response to extracellular G6P. The transcript uhpT-RsaG undergoes degradation from 5' to 3' end by the action of the exoribonucleases J1/J2, which are blocked by a stable hairpin structure at the 5' end of RsaG, leading to its accumulation. RsaG together with uhpT are induced when bacteria are internalized into host cells or in presence of mucus-secreting cells. Using MS2 affinity purification coupled with RNA sequencing, several RNAs were identified as targets including mRNAs encoding the transcriptional factors Rex, CcpA, SarA and the sRNA RsaI. Our data suggested that RsaG contributes to the control of redox homeostasis and adjusts metabolism to changing environmental conditions. RsaG uses different molecular mechanisms to stabilize, to degrade, or to repress translation of its mRNA targets. While RsaG is conserved only in closely related species, the uhpT 3'UTR of the ape pathogen S. simiae harbors a sRNA, whose sequence is highly different, and which does not respond to G6P levels. Our results hypothesized that the 3'UTRs from UhpT transporter encoding mRNAs could have rapidly evolved to enable adaptation to host niches.

Mots clés

Staphylococcus aureus , 3’UTR derived sRNA, redox homeostasis

Référence

Mol Microbiol. 2021 Nov 16;: