High-Resolution IMS-MS to Assign Additional Disulfide Bridge Pairing in Complementarity-Determining Regions of an IgG4 Monoclonal Antibody.

Fiche publication


Date publication

août 2021

Journal

Journal of the American Society for Mass Spectrometry

Auteurs

Membres identifiés du Cancéropôle Est :
Dr CIANFERANI Sarah


Tous les auteurs :
Deslignière E, Botzanowski T, Diemer H, Cooper-Shepherd DA, Wagner-Rousset E, Colas O, Béchade G, Giles K, Hernandez-Alba O, Beck A, Cianférani S

Résumé

Monoclonal antibodies (mAbs) have taken on an increasing importance for the treatment of various diseases, including cancers and immunological disorders. Disulfide bonds play a pivotal role in therapeutic antibody structure and activity relationships. Disulfide connectivity and cysteine-related variants are considered as critical quality attributes that must be monitored during mAb manufacturing and storage, as non-native disulfide bridges and aggregates might be responsible for loss of biological function and immunogenicity. The presence of cysteine residues in the complementarity-determining regions (CDRs) is rare in human antibodies but may be critical for the antigen-binding or deleterious for therapeutic antibody development. Consequently, in-depth characterization of their disulfide network is a prerequisite for mAb developability assessment. Mass spectrometry (MS) techniques represent powerful tools for accurate identification of disulfide connectivity. We report here on the MS-based characterization of an IgG4 comprising two additional cysteine residues in the CDR of its light chain. Classical bottom-up approaches after trypsin digestion first allowed identification of a dipeptide containing two disulfide bridges. To further investigate the conformational heterogeneity of the disulfide-bridged dipeptide, we performed ion mobility spectrometry-mass spectrometry (IMS-MS) experiments. Our results highlight benefits of high resolution IMS-MS to tackle the conformational landscape of disulfide peptides generated after trypsin digestion of a humanized IgG4 mAb under development. By comparing arrival time distributions of the mAb-collected and synthetic peptides, cyclic IMS afforded unambiguous assessment of disulfide bonds. In addition to classical peptide mapping, qualitative high-resolution IMS-MS can be of great interest to identify disulfide bonds within therapeutic mAbs.

Référence

J Am Soc Mass Spectrom. 2021 Aug 26;: