Novel Porous Carbon Material for the Detection of Traces of Volatile Organic Compounds in Indoor Air.

Fiche publication


Date publication

août 2021

Journal

ACS applied materials & interfaces

Auteurs

Membres identifiés du Cancéropôle Est :
Pr SANCHEZ Jean-Baptiste


Tous les auteurs :
El Mohajir A, Castro-Gutiérrez J, Canevesi RLS, Bezverkhyy I, Weber G, Bellat JP, Berger F, Celzard A, Fierro V, Sanchez JB

Résumé

A highly sensitive and selective silicon-based microanalytical prototype was used to identify a few ppb of volatile organic compounds (VOCs) in indoor air. Herein, a new nonactivated tannin-derived carbon synthesized by an environmentally friendly method, DM2C, a MIL-101(Cr) MOF, and a DaY zeolite were selected for the preconcentration of BTEX compounds (i.e., benzene, toluene, ethylbenzene, and xylenes). Integrating a small amount of these nanoporous solids inside a miniaturized preconcentration unit led to excellent preconcentration performance. By taking advantage of the high adsorption-desorption capacities of the DM2C adsorbent, concentrations as low as 23.5, 30.8, 16.7, 25, and 28.8 ppb of benzene, toluene, ethylbenzene, ortho- and para-xylene, respectively, were detected in a short analysis time (∼10 min) even in the presence of 60% relative humidity at 25 °C. The DM2C showed excellent stability over a period of 4 months and more than 500 tests, as well as repeatability, which makes it a very reliable adsorbent for the detection of trace VOCs in indoor air under realistic conditions in the presence of humidity.

Mots clés

BTEX, MOF, hydrophobic carbon, indoor air monitoring, microporous materials, miniaturized gas chromatograph, preconcentrator, zeolite

Référence

ACS Appl Mater Interfaces. 2021 Aug 11;: