Synthetic biological circuit tested in spaceflight.

Fiche publication


Date publication

février 2021

Journal

Life sciences in space research

Auteurs

Membres identifiés du Cancéropôle Est :
Dr MARÉCHAL-DROUARD Laurence, Dr HEINTZ Dimitri


Tous les auteurs :
Kitto RZ, Dhillon Y, Bevington J, Horne M, Giegé P, Drouard L, Heintz D, Villette C, Corre N, Arrivé M, Manefield MJ, Bowman R, Favier JJ, Osborne B, Welch C, McKay CP, Hammond MC

Résumé

Synthetic biology has potential spaceflight applications yet few if any studies have attempted to translate Earth-based synthetic biology tools into spaceflight. An exogenously inducible biological circuit for protein production in Arabidopsis thaliana, pX7-AtPDSi (Guo et al. 2003), was flown to ISS and functionally investigated. Seedlings were grown in a custom built 1.25 U plant greenhouse. Images recorded during the experiment show that leaves of pX7-AtPDSi seedlings photobleached as designed while wild type Col-0 leaves did not, which reveals that the synthetic circuit led to protein production during spaceflight. Polymerase chain reaction analysis post-flight also confirms that the Cre/LoxP (recombination system) portions of the circuit were functional in spaceflight. The subcomponents of the biological circuit, estrogen-responsive transcription factor XVE, Cre/LoxP DNA recombination system, and RNAi post-transcriptional gene silencing system now have flight heritage and can be incorporated in future designs for space applications. To facilitate future plant studies in space, the full payload design and manufacturing files are made available.

Référence

Life Sci Space Res (Amst). 2021 Feb;28:57-65