The Importance of Charge in Perturbing the Aromatic Glue Stabilizing the Protein-Protein Interface of Homodimeric tRNA-Guanine Transglycosylase.

Fiche publication


Date publication

novembre 2020

Journal

ACS chemical biology

Auteurs

Membres identifiés du Cancéropôle Est :
Dr CIANFERANI Sarah


Tous les auteurs :
Nguyen A, Nguyen D, Phong Nguyen TX, Sebastiani M, Dörr S, Hernandez-Alba O, Debaene F, Cianférani S, Heine A, Klebe G, Reuter K

Résumé

Bacterial tRNA-guanine transglycosylase (Tgt) is involved in the biosynthesis of the modified tRNA nucleoside queuosine present in the anticodon wobble position of tRNAs specific for aspartate, asparagine, histidine, and tyrosine. Inactivation of the gene leads to decreased pathogenicity of bacteria. Therefore, Tgt constitutes a putative target for Shigellosis drug therapy. Since it is only active as homodimer, interference with dimer-interface formation may, in addition to active-site inhibition, provide further means to disable this protein. A cluster of four aromatic residues seems important to stabilize the homodimer. We mutated residues of this aromatic cluster and analyzed each mutated variant with respect to the dimer and thermal stability or enzyme activity by applying native mass spectrometry, a thermal shift assay, enzyme kinetics, and X-ray crystallography. Our structural studies indicate a strong influence of pH on the homodimer stability. Apparently, protonation of a histidine within the aromatic cluster supports the collapse of an essential structural motif within the dimer interface at slightly acidic pH.

Référence

ACS Chem Biol. 2020 Nov 9;: