Enhancement of spontaneous emission of semiconductor quantum dots inside one-dimensional porous silicon photonic crystals.

Fiche publication


Date publication

juillet 2020

Journal

Optics express

Auteurs

Membres identifiés du Cancéropôle Est :
Pr NABIEV Igor


Tous les auteurs :
Dovzhenko D, Martynov I, Samokhvalov P, Osipov E, Lednev M, Chistyakov A, Karaulov A, Nabiev I

Résumé

Controlling spontaneous emission by modifying the local electromagnetic environment is of great interest for applications in optoelectronics, biosensing and energy harvesting. Although the development of devices based on one-dimensional porous silicon photonic crystals with embedded luminophores is a promising approach for applications, the efficiency of the embedded luminophores remains a key challenge because of the strong quenching of the emission due to the contact of the luminophores with the surface of porous silicon preventing the observation of interesting light-matter coupling effects. Here, we experimentally demonstrate an increase in the quantum dot (QD) spontaneous emission rate inside a porous silicon microcavity and almost an order of magnitude enhancement of QD photoluminescence intensity in the weak light-matter coupling regime. Furthermore, we have demonstrated drastic alteration of the QD spontaneous emission at the edge of the photonic band gap in porous silicon distributed Bragg reflectors and proved its dependence on the change in the density of photonic states.

Référence

Opt Express. 2020 Jul 20;28(15):22705-22717