CDYL2 Epigenetically Regulates MIR124 to Control NF-κB/STAT3-Dependent Breast Cancer Cell Plasticity.

Fiche publication


Date publication

mai 2020

Journal

iScience

Auteurs

Membres identifiés du Cancéropôle Est :
Dr GRONEMEYER Hinrich


Tous les auteurs :
Siouda M, Dujardin AD, Barbollat-Boutrand L, Mendoza-Parra MA, Gibert B, Ouzounova M, Bouaoud J, Tonon L, Robert M, Foy JP, Lavergne V, Manie SN, Viari A, Puisieux A, Ichim G, Gronemeyer H, Saintigny P, Mulligan P

Résumé

Epigenetic deregulation of gene transcription is central to cancer cell plasticity and malignant progression but remains poorly understood. We found that the uncharacterized epigenetic factor chromodomain on Y-like 2 (CDYL2) is commonly over-expressed in breast cancer, and that high CDYL2 levels correlate with poor prognosis. Supporting a functional role for CDYL2 in malignancy, it positively regulated breast cancer cell migration, invasion, stem-like phenotypes, and epithelial-to-mesenchymal transition. CDYL2 regulation of these plasticity-associated processes depended on signaling via p65/NF-κB and STAT3. This, in turn, was downstream of CDYL2 regulation of MIR124 gene transcription. CDYL2 co-immunoprecipitated with G9a/EHMT2 and GLP/EHMT1 and regulated the chromatin enrichment of G9a and EZH2 at MIR124 genes. We propose that CDYL2 contributes to poor prognosis in breast cancer by recruiting G9a and EZH2 to epigenetically repress MIR124 genes, thereby promoting NF-κB and STAT3 signaling, as well as downstream cancer cell plasticity and malignant progression.

Mots clés

Cancer, Functional Aspects of Cell Biology, Molecular Mechanism of Gene Regulation, Stem Cells Research

Référence

iScience. 2020 May 6;23(6):101141