Brain F-FDG PET Metabolic Abnormalities in Patients with Long-Lasting Macrophagic Myofascitis.
Fiche publication
Date publication
mars 2017
Journal
Journal of nuclear medicine : official publication, Society of Nuclear Medicine
Auteurs
Membres identifiés du Cancéropôle Est :
Pr VERGER Antoine
Tous les auteurs :
Van Der Gucht A, Aoun Sebaiti M, Guedj E, Aouizerate J, Yara S, Gherardi RK, Evangelista E, Chalaye J, Cottereau AS, Verger A, Bachoud-Levi AC, Abulizi M, Itti E, Authier FJ
Lien Pubmed
Résumé
The aim of this study was to characterize brain metabolic abnormalities in patients with macrophagic myofascitis (MMF) and the relationship with cognitive dysfunction through the use of PET with F-FDG. F-FDG PET brain imaging and a comprehensive battery of neuropsychological tests were performed in 100 consecutive MMF patients (age [mean ± SD], 45.9 ± 12 y; 74% women). Images were analyzed with statistical parametric mapping (SPM12). Through the use of analysis of covariance, all F-FDG PET brain images of MMF patients were compared with those of a reference population of 44 healthy subjects similar in age (45.4 ± 16 y; = 0.87) and sex (73% women; = 0.88). The neuropsychological assessment identified 4 categories of patients: those with no significant cognitive impairment ( = 42), those with frontal subcortical (FSC) dysfunction ( = 29), those with Papez circuit dysfunction ( = 22), and those with callosal disconnection ( = 7). In comparison with healthy subjects, the whole population of patients with MMF exhibited a spatial pattern of cerebral glucose hypometabolism ( < 0.001) involving the occipital lobes, temporal lobes, limbic system, cerebellum, and frontoparietal cortices, as shown by analysis of covariance. The subgroup of patients with FSC dysfunction exhibited a larger extent of involved areas (35,223 voxels vs. 13,680 voxels in the subgroup with Papez circuit dysfunction and 5,453 voxels in patients without cognitive impairment). Nonsignificant results were obtained for the last subgroup because of its small population size. Our study identified a peculiar spatial pattern of cerebral glucose hypometabolism that was most marked in MMF patients with FSC dysfunction. Further studies are needed to determine whether this pattern could represent a diagnostic biomarker of MMF in patients with chronic fatigue syndrome and cognitive dysfunction.
Mots clés
Adolescent, Adult, Aged, Brain, diagnostic imaging, Brain Diseases, Metabolic, diagnostic imaging, Chronic Disease, Cognition Disorders, diagnostic imaging, Fasciitis, diagnostic imaging, Female, Fluorodeoxyglucose F18, pharmacokinetics, Glucose, metabolism, Humans, Male, Middle Aged, Myositis, diagnostic imaging, Positron-Emission Tomography, methods, Radiopharmaceuticals, pharmacokinetics, Reproducibility of Results, Sensitivity and Specificity, Young Adult
Référence
J. Nucl. Med.. 2017 Mar;58(3):492-498