Synergistic effects of BMP-2, BMP-6 or BMP-7 with human plasma fibronectin onto hydroxyapatite coatings: a comparative study.

Fiche publication


Date publication

avril 2017

Journal

Acta biomaterialia

Auteurs

Membres identifiés du Cancéropôle Est :
Dr ANSELME Karine


Tous les auteurs :
Brigaud I, Agniel R, Leroy Dudal J, Kellouche S, Ponche A, Bouceba T, Mihailescu N, Sopronyi M, Viguier E, Ristoscu C, Sima F, Mihailescu IN, Carreira ACO, Sogayar MC, Gallet O, Anselme K

Résumé

Design of new osteoinductive biomaterials to reproduce an optimized physiological environment capable of recruiting stem cells and instructing their fate towards the osteoblastic lineage has become a priority in orthopedic surgery. This work aims at evaluating the bioactivity of BMP combined with human plasma fibronectin (FN/BMP) delivered in solution or coated onto titanium-hydroxyapatite (TiHA) surfaces. Herein, we focus on the comparison of in vitro osteogenic efficacy in mouse C2C12 pre-osteoblasts of three BMP members, namely: BMP-2, BMP-6 and BMP-7. In parallel, we evaluated the molecular binding strength between each BMP with FN using the Surface Plasmon Resonance (SPR) technology. The affinity of BMPs for FN was found totally different and dependent on BMP type. Indeed, the combination of FN with BMP-2 on TiHA surfaces potentiates the burst of gene-mediated osteogenic induction, while it prolongs the osteogenic activity of BMP-6 and surprisingly annihilates the BMP-7 one. These results correlate with FN/BMP affinity for TiHA, since BMP-6 > BMP-2 > BMP-7. In addition, by analyzing the osteogenic activity in the peri-implant environment, we showed that osteoinductive paracrine effects were significantly decreased upon (FN/BMP-6), as opposed to (FN/BMP-2) coatings. Altogether, our results support the use of FN/BMP-6 to develop a biomimetic microenvironment capable to induce osteogenic activity under physiological conditions, with minimum paracrine signalization.

Mots clés

BMPs, Functional coatings, Human plasma fibronectin, In vitro, Osteogenesis

Référence

Acta Biomater. 2017 Apr;: