Investigation of membrane penetration depth and interactions of the amino-terminal domain of huntingtin: refined analysis by tryptophan fluorescence measurement.

Fiche publication


Date publication

septembre 2014

Auteurs

Membres identifiés du Cancéropôle Est :
Pr BECHINGER Burkhard


Tous les auteurs :
Michalek M, Aisenbrey C, Bechinger B

Résumé

The membrane-association properties of the amino-terminal domain of huntingtin are accompanied by subcellular redistribution of the protein in cellular compartments. In this study we used tryptophan substitution of amino-acid residues at different positions of the huntingtin 1-17 domain (Htt17) to precisely determine, for the first time, the depth of penetration of the peptides within the lipid bilayer. Initially, secondary structure preferences and membrane association properties were quantitatively determined for several membrane lipid compositions; they were found to be closely related to those of the natural peptide, indicating that changes in the sequence had little effect on these characteristics of the domain. The tryptophan-substituted peptides became inserted into the membranes' interfacial region, with average tryptophan positions between 7.5 and 11 A from the bilayer center, in agreement with in-plane orientation of the peptide. Participation of the very-amino terminus of the peptide in the membrane-association process was demonstrated. The results not only revealed the occurrence of association intermediates when the huntingtin 1-17 anchoring sequence became inserted into the membrane but also suggest the formation of aggregates and/or oligomers during membrane association. When inserted, the F11W site was of crucial importance in lipid anchoring and stabilization of the whole peptide, whereas the terminal residues are located close to the membrane surface. The carboxy-terminal tryptophan (F17W), which also constitutes the site of the polyglutamine extension in the natural domain, was found closest to the aqueous environment, accompanied with the highest aqueous quenching constants. These results were used to propose a refined model of lipid interactions of the huntingtin 1-17 domain.

Référence

Eur Biophys J. 2014 Sep;43(8-9):347-60