The molecular basis of vitamin D receptor and beta-catenin crossregulation.

Fiche publication


Date publication

mars 2006

Auteurs

Membres identifiés du Cancéropôle Est :
Dr MORAS Dino


Tous les auteurs :
Shah S, Islam MN, Dakshanamurthy S, Rizvi I, Rao M, Herrell R, Zinser G, Valrance M, Aranda A, Moras D, Norman A, Welsh J, Byers SW

Résumé

The signaling/oncogenic activity of beta-catenin can be repressed by activation of the vitamin D receptor (VDR). Conversely, high levels of beta-catenin can potentiate the transcriptional activity of 1,25-dihydroxyvitamin D3 (1,25D). We show here that the effects of beta-catenin on VDR activity are due to interaction between the activator function-2 (AF-2) domain of the VDR and C terminus of beta-catenin. Acetylation of the beta-catenin C terminus differentially regulates its ability to activate TCF or VDR-regulated promoters. Mutation of a specific residue in the AF-2 domain, which renders the VDR trancriptionally inactive in the context of classical coactivators, still allows interaction with beta-catenin and ligand-dependent activation of VDRE-containing promoters. VDR antagonists, which block the VDRE-directed activity of the VDR and recruitment of classical coactivators, do allow VDR to interact with beta-catenin, which suggests that these and perhaps other ligands would permit those functions of the VDR that involve beta-catenin interaction.

Référence

Mol Cell. 2006 Mar 17;21(6):799-809.