Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere.
Fiche publication
Date publication
septembre 2008
Auteurs
Membres identifiés du Cancéropôle Est :
Pr TAILLANDIER Luc
Tous les auteurs :
Duffau H, Peggy Gatignol ST, Mandonnet E, Capelle L, Taillandier L
Lien Pubmed
Résumé
OBJECT: Despite better knowledge of cortical language organization, its subcortical anatomofunctional connectivity remains poorly understood. The authors used intraoperative subcortical stimulation in awake patients undergoing operation for a glioma in the left dominant hemisphere to map the language pathways and to determine the contribution of such a method to surgical results. METHODS: One hundred fifteen patients harboring a World Health Organization Grade II glioma within language areas underwent operation after induction of local anesthesia, using direct electrical stimulation to perform online cortical and subcortical language mapping throughout the resection. RESULTS: After detection of cortical language sites, the authors identified 1 or several of the following subcortical language pathways in all patients: 1) arcuate fasciculus, eliciting phonemic paraphasia when stimulated; 2) inferior frontooccipital fasciculus, generating semantic paraphasia when stimulated; 3) subcallosal fasciculus, inducing transcortical motor aphasia during stimulation; 4) frontoparietal phonological loop, eliciting speech apraxia during stimulation; and 5) fibers coming from the ventral premotor cortex, inducing anarthria when stimulated. These structures were preserved, representing the limits of the resection. Despite a transient immediate postoperative worsening, all but 2 patients (98%) returned to baseline or better. On control MR imaging, 83% of resections were total or subtotal. CONCLUSIONS: These results represent the largest experience with human subcortical language mapping ever reported. The use of intraoperative cortical and subcortical stimulation gives a unique opportunity to perform an accurate and reliable real-time anatomofunctional study of language connectivity. Such knowledge of the individual organization of language networks enables practitioners to optimize the benefit-to-risk ratio of surgery for Grade II glioma within the left dominant hemisphere.
Référence
J Neurosurg. 2008 Sep;109(3):461-71.