Direct observation of stacking faults and pore connections in ordered cage-type mesoporous silica FDU-12 by electron tomography.

Fiche publication


Date publication

décembre 2008

Auteurs

Membres identifiés du Cancéropôle Est :
Dr SCHULTZ Patrick


Tous les auteurs :
Ersen O, Parmentier J, Solovyov LA, Drillon M, Pham-Huu C, Werckmann J, Schultz P

Résumé

The porous structure and the periodic array of cavities in ordered mesoporous materials with large, three-dimensionally arranged and interconnected pores is thoroughly described by combining electron tomography, small-angle X-ray diffraction, and nitrogen sorption techniques. We used the ability of the electron tomography to provide local three-dimensional information of a nano-object and compared the results to those of the other characterization techniques which furnish global information. We showed thus that the face-centered cubic (fcc) structure usually assigned to the FDU-12 materials is in fact an intergrowth of cubic and hexagonal close-packing structures. This agrees with small-angle X-ray scattering (SAXS) modeling, but for the first time a direct visualization of these stacking faults was achieved. Three-dimensional transmission electron microscopy (3D-TEM) provides also a direct and unique evidence of peculiar stacking defects ("z-shifted [111] areas"), as well as an estimate of their density, which have never been reported elsewhere. In addition, interstitial cavities were also observed, revealing the complex defective structure of this material. A direct observation of the nature of the connecting pores was also achieved for the first time, with a resolution limit of 2 nm. Finally, the characteristics of the porous network evidenced by 3D-TEM are used to explain and validate the results obtained by nitrogen sorption experiments.

Référence

J Am Chem Soc. 2008 Dec 10;130(49):16800-6.