Stepwise use of genomics and transcriptomics technologies increases diagnostic yield in Mendelian disorders.

Fiche publication


Date publication

février 2023

Journal

Frontiers in cell and developmental biology

Auteurs

Membres identifiés du Cancéropôle Est :
Pr CALLIER Patrick, Pr FAIVRE Laurence, Pr PHILIPPE Christophe, Mr DUFFOURD Yannis


Tous les auteurs :
Colin E, Duffourd Y, Chevarin M, Tisserant E, Verdez S, Paccaud J, Bruel AL, Tran Mau-Them F, Denommé-Pichon AS, Thevenon J, Safraou H, Besnard T, Goldenberg A, Cogné B, Isidor B, Delanne J, Sorlin A, Moutton S, Fradin M, Dubourg C, Gorce M, Bonneau D, El Chehadeh S, Debray FG, Doco-Fenzy M, Uguen K, Chatron N, Aral B, Marle N, Kuentz P, Boland A, Olaso R, Deleuze JF, Sanlaville D, Callier P, Philippe C, Thauvin-Robinet C, Faivre L, Vitobello A

Résumé

Multi-omics offer worthwhile and increasingly accessible technologies to diagnostic laboratories seeking potential second-tier strategies to help patients with unresolved rare diseases, especially patients clinically diagnosed with a rare OMIM (Online Mendelian Inheritance in Man) disease. However, no consensus exists regarding the optimal diagnostic care pathway to adopt after negative results with standard approaches. In 15 unsolved individuals clinically diagnosed with recognizable OMIM diseases but with negative or inconclusive first-line genetic results, we explored the utility of a multi-step approach using several novel omics technologies to establish a molecular diagnosis. Inclusion criteria included a clinical autosomal recessive disease diagnosis and single heterozygous pathogenic variant in the gene of interest identified by first-line analysis (60%-9/15) or a clinical diagnosis of an X-linked recessive or autosomal dominant disease with no causative variant identified (40%-6/15). We performed a multi-step analysis involving short-read genome sequencing (srGS) and complementary approaches such as mRNA sequencing (mRNA-seq), long-read genome sequencing (lrG), or optical genome mapping (oGM) selected according to the outcome of the GS analysis. SrGS alone or in combination with additional genomic and/or transcriptomic technologies allowed us to resolve 87% of individuals by identifying single nucleotide variants/indels missed by first-line targeted tests, identifying variants affecting transcription, or structural variants sometimes requiring lrGS or oGM for their characterization. Hypothesis-driven implementation of combined omics technologies is particularly effective in identifying molecular etiologies. In this study, we detail our experience of the implementation of genomics and transcriptomics technologies in a pilot cohort of previously investigated patients with a typical clinical diagnosis without molecular etiology.

Mots clés

RNA-seq, clinical diagnoses, genome sequencing, long-read sequencing, optical genome mapping

Référence

Front Cell Dev Biol. 2023 02 28;11:1021920