Retinoic acid induces Sertoli cell paracrine signals for spermatogonia differentiation but cell autonomously drives spermatocyte meiosis.

Fiche publication


Date publication

octobre 2012

Auteurs

Membres identifiés du Cancéropôle Est :
Pr CHAMBON Pierre, Dr DAVIDSON Irwin


Tous les auteurs :
Raverdeau M, Gely-Pernot A, Feret B, Dennefeld C, Benoit G, Davidson I, Chambon P, Mark M, Ghyselinck NB

Résumé

Direct evidence for a role of endogenous retinoic acid (RA), the active metabolite of vitamin A in the initial differentiation and meiotic entry of spermatogonia, and thus in the initiation of spermatogenesis is still lacking. RA is synthesized by dedicated enzymes, the retinaldehyde dehydrogenases (RALDH), and binds to and activates nuclear RA receptors (RARA, RARB, and RARG) either within the RA-synthesizing cells or in the neighboring cells. In the present study, we have used a combination of somatic genetic ablations and pharmacological approaches in vivo to show that during the first, prepubertal, spermatogenic cycle (i) RALDH-dependent synthesis of RA by Sertoli cells (SC), the supporting cells of the germ cell (GC) lineage, is indispensable to initiate differentiation of A aligned into A1 spermatogonia; (ii) RARA in SC mediates the effects of RA, possibly through activating Mafb expression, a gene whose Drosophila homolog is mandatory to GC differentiation; (iii) RA synthesized by premeiotic spermatocytes cell autonomously induces meiotic initiation through controlling the RAR-dependent expression of Stra8. Furthermore, we show that RA of SC origin is no longer necessary for the subsequent spermatogenic cycles but essential to spermiation. Altogether, our data establish that the effects of RA in vivo on spermatogonia differentiation are indirect, via SC, but direct on meiotic initiation in spermatocytes, supporting thereby the notion that, contrary to the situation in the female, RA is necessary to induce meiosis in the male.

Référence

Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16582-7