Evolutionary history of transformation from chronic lymphocytic leukemia to Richter syndrome.

Fiche publication


Date publication

janvier 2023

Journal

Nature medicine

Auteurs

Membres identifiés du Cancéropôle Est :
Pr FEUGIER Pierre, Pr BROSEUS Julien


Tous les auteurs :
Parry EM, Leshchiner I, Guièze R, Johnson C, Tausch E, Parikh SA, Lemvigh C, Broséus J, Hergalant S, Messer C, Utro F, Levovitz C, Rhrissorrakrai K, Li L, Rosebrock D, Yin S, Deng S, Slowik K, Jacobs R, Huang T, Li S, Fell G, Redd R, Lin Z, Knisbacher BA, Livitz D, Schneider C, Ruthen N, Elagina L, Taylor-Weiner A, Persaud B, Martinez A, Fernandes SM, Purroy N, Anandappa AJ, Ma J, Hess J, Rassenti LZ, Kipps TJ, Jain N, Wierda W, Cymbalista F, Feugier P, Kay NE, Livak KJ, Danysh BP, Stewart C, Neuberg D, Davids MS, Brown JR, Parida L, Stilgenbauer S, Getz G, Wu CJ

Résumé

Richter syndrome (RS) arising from chronic lymphocytic leukemia (CLL) exemplifies an aggressive malignancy that develops from an indolent neoplasm. To decipher the genetics underlying this transformation, we computationally deconvoluted admixtures of CLL and RS cells from 52 patients with RS, evaluating paired CLL-RS whole-exome sequencing data. We discovered RS-specific somatic driver mutations (including IRF2BP2, SRSF1, B2M, DNMT3A and CCND3), recurrent copy-number alterations beyond del(9p21)(CDKN2A/B), whole-genome duplication and chromothripsis, which were confirmed in 45 independent RS cases and in an external set of RS whole genomes. Through unsupervised clustering, clonally related RS was largely distinct from diffuse large B cell lymphoma. We distinguished pathways that were dysregulated in RS versus CLL, and detected clonal evolution of transformation at single-cell resolution, identifying intermediate cell states. Our study defines distinct molecular subtypes of RS and highlights cell-free DNA analysis as a potential tool for early diagnosis and monitoring.

Référence

Nat Med. 2023 01 9;: