Fiche publication
Date publication
janvier 2026
Journal
Clinical and translational radiation oncology
Auteurs
Membres identifiés du Cancéropôle Est :
Dr BESSIERES Igor
Tous les auteurs :
Le Guévelou J, Castro M, Texier B, Barateau A, Martin RA, Lafond C, Bessières I, Nunes JC, Crevoisier R, Acosta O
Lien Pubmed
Résumé
While urinary organs at risk (OARs) such as the intraprostatic urethra and the bladder trigone are increasingly recognized as associated with severe genitourinary toxicity, their delineation in clinical practice is time consuming and probably associated with a large interobserver variability. The aim of this study was to propose a magnetic resonance (MR) deep learning segmentation of urinary OARs for prostate cancer (PCa) radiotherapy (RT), based on a validated atlas.
Mots clés
Automatic segmentation, Deep learning, Intraprostatic urethra, Magnetic resonance imaging, Urinary organs at risk
Référence
Clin Transl Radiat Oncol. 2026 01;56:101091