Fiche publication


Date publication

décembre 2025

Journal

Diagnostic and interventional radiology (Ankara, Turkey)

Auteurs

Membres identifiés du Cancéropôle Est :
Pr ROY Catherine , Pr OHANA Mickaël


Tous les auteurs :
Graber L, Akış MZ, Séverac F, Mertz L, Akış S, Roy C, Ohana M

Résumé

To evaluate whether deep learning reconstruction (DLR) can reduce the radiation dose in routine clinical computed tomography (CT) scans compared with iterative reconstruction (IR) while maintaining or improving image quality. The study assesses DLR's consistency and effectiveness across four distinct CT protocols-chest, head, chest-abdomen-pelvis (CAP) oncology, and lower limb CT angiography (CTA)-representing a wide range of clinical applications.

Mots clés

Deep learning reconstruction, computed tomography scan, image quality, radiation dose reduction

Référence

Diagn Interv Radiol. 2025 12 5;: