Fiche publication
Date publication
septembre 2025
Journal
Biology of the cell
Auteurs
Membres identifiés du Cancéropôle Est :
Dr SCHULTZ Patrick
Tous les auteurs :
Meyer C, Hanss V, Baudrier E, Naegel B, Schultz P
Lien Pubmed
Résumé
Deep learning methods using convolutional neural networks are very effective for automatic image segmentation tasks with no exception for cellular electron micrographs. However, the lack of dedicated easy-to-use tools largely reduces the widespread use of these techniques. Here we present DeepSCEM, a straightforward tool for fast and efficient segmentation of cellular electron microscopy images using deep learning with a special focus on efficient and user-friendly generation and training of models for organelle segmentation.
Mots clés
cellular imaging, deep learning, electron microscopy, organelles, segmentation, software
Référence
Biol Cell. 2025 09;117(9):e70032