Fiche publication
Date publication
mai 2025
Journal
Journal of thoracic disease
Auteurs
Membres identifiés du Cancéropôle Est :
Pr LOFFROY Romaric
Tous les auteurs :
Zhang Z, Liu C, Zhou S, Yang X, Loffroy R, Kim HW, Shan L
Lien Pubmed
Résumé
With the increasing use of computed tomography (CT) in clinical practice, greater attention is being paid to the radiation dose. There are numerous methods available for reducing the CT radiation dose, but enhancement via a reconstruction algorithm is the most effective method. This study aimed to evaluate the performance of a proposed deep learning (DL) algorithm for low-dose chest CT image reconstruction among patients with pulmonary diseases and to compare it with several mainstream iterative reconstruction (IR) techniques.
Mots clés
Image reconstruction, deep learning (DL), low-dose computed tomography (LDCT), pulmonary disease
Référence
J Thorac Dis. 2025 05 30;17(5):3249-3258