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The difference in scales between cell and structural biology
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The Arp2/3 complex in branched actin networks

• 7 Subunits; initiates branching in the actin cytoskeleton 
• Actin-related proteins 2 and 3 were name-giving 

• Actin polymerization in resulting networks generates forces

• Driving cell motility, trafficking and cell division
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Adapted from Jaumouille and Waterman, 2020, doi.org/10.3389/fimmu.2020.01097
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Available structure data prior to 2020

Model derived from crystal structure, 
inactive, ~2-3 Å resolution

Ambiguous fit

Adapted from Robinson et al., 2001, doi.org/ 10.1126/science.1066333
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Adapted from Rouiller et al., 2008, 10.1083/jcb.200709092
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Improve the previously proposed branch junction model

• Needed: “high” resolution structure of the branch junction
• Achieve sufficient resolution to fit existing models unambiguously

• Describe structural changes between inactive Arp2/3 
and the complex in its branch junction state

• Approach: Cryo-ET and subtomogram averaging 
of branch junctions in lamellipodia
• Lamellipodia are thin enough to be accessibly to Cryo-ET

• Lamellipodia are easy to identify and high in branch junction content



Cryo-electron tomography of lamellipodia
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Adapted from Weber et al., 2019, doi.org/10.3390/cells8010057



200 µm

Cryo-ET – identifying a target site



100 µm

Cryo-ET – identifying a target site



2 µm

Cryo-ET – identifying a target site



Cryo-ET – a tilt-series of a lamellipodium



Cryo-ET – a tomogram of a lamellipodium



Subtomogram averaging (STA) – general principle

• Cryo-ET data contains
information on protein structure 
but is quite noisy

• If multiple instances of a protein
are found within a data set, they
can be aligned and averaged

• Averaging improves the
signal-to-noise ratio and allows 
for structure determination

Adapted from Fäßler et al., 2020, doi.org/10.1038/s41467-020-20286-x



Subtomogram averaging (STA) – general principle



Actual pipeline
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Adapted from Fäßler et al., 2020, doi.org/10.1038/s41467-020-20286-x



• Visibility of α-helices confirms
sub-nanometer resolution

• Structure is featured enough
for fitting molecular models

9Å resolution in-cell structure of the branch junction

Adapted from Fäßler et al., 2020, doi.org/10.1038/s41467-020-20286-x



• Not all subunits bind the 
mother filament

• The interaction surface is smaller
than previously postulated

Interactions between Arp2/3 complex and the mother filament
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Adapted from Fäßler et al., 2020, doi.org/10.1038/s41467-020-20286-x



• 2 subcomplexes rotate
against each other:

• Arp2 is relocated to 
the side of Arp3 

• ArpC3 moves towards Arp2
and contacts it

Conformational differences to the inactive complex

Adapted from Fäßler et al., 2020, doi.org/10.1038/s41467-020-20286-x



Cryo-ET captures vast amounts of contextual information 

• Next to studying structures 
by subtomogram averaging
we can characterize 
the occurring ultrastructural
assemblies

• Here: The actin filament 
meshwork
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Ultrastructural analysis of filament networks

• Filament position and orientation
is crucial for function

• Coordinates of filaments and 
reference structures, e.g., leading edge,
need to be determined

Tomogram position
ROI for subset
Cell edge



Vectorization of filaments in tomograms

• Deriving vector-based representations
from graphical representations 
via automated tracking

• Automated quantitative analysis of 
complete lamellipodia and 
individual filament traits
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Quantification of vectorized filaments

Template matching based tracking in Amira Adapted from Dimchev et al., 2021, doi.org/10.1016/j.jsb.2021.107808 



Differential behavior of Arp2/3 subunit isoforms

• Two different ArpC5 subunit isoforms: 
ArpC5 and ArpC5L

• Specifically, ArpC5 is
associated with more metastasis and 
worse outcome in cancer

Adapted from Fäßler et al., 2020, doi.org/10.1038/s41467-020-20286-x



Morphology of isoform-specific knockout cells

• ArpC5 knockout cells (C5KO) exhibit narrower lamellipodia

• ArpC5L knockout cells (C5LKO) exhibit wider lamellipodia

Adapted from Fäßler et al., 2023, doi.org/10.1126/sciadv.add6495



Random migration of isoform-specific knockout cells

• Random migration speed of C5KO cells is reduced

• Random migration speed of C5LKO cells is comparable to WT

Adapted from Fäßler et al., 2023, doi.org/10.1126/sciadv.add6495



Actin architecture of isoform-specific knockout cells

• Actin filaments in lamellipodia of C5KO run rather perpendicular to the  protrusion-vector

• Actin filaments in lamellipodia of C5LKO run rather parallel to the  protrusion-vector

Adapted from Fäßler et al., 2023, doi.org/10.1126/sciadv.add6495



Branch junction density is unaltered in both KO genotypes

• Branch junction number cannot be 
the cause of altered phenotypes

• There are sufficient branches in the
KO lines to probe for structural
differences 

Adapted from Fäßler et al., 2023, doi.org/10.1126/sciadv.add6495



Isoform-specific branch junction structures

• ArpC1 appears more stable in C5KO branch junctions

• ArpC1 appears less stable in C5LKO branch junctions

• ArpC1 mediates interactions between the complex and other actin organizers

Adapted from Fäßler et al., 2023, doi.org/10.1126/sciadv.add6495



Actin polymerization is reduced in lamellipodia of C5KO cells

Adapted from Fäßler et al., 2023, doi.org/10.1126/sciadv.add6495



Isoform-specific recruitment of actin filament elongators

• Ena/VASP family members are depleted at the leading edge in C5KO cells 

Adapted from Fäßler et al., 2023, doi.org/10.1126/sciadv.add6495



C5KO and C5LKO phenotypes depend on filament elongators

Adapted from Fäßler et al., 2023, doi.org/10.1126/sciadv.add6495



ArpC5 isoforms affect lamellipodia and cell migration across scales

• Isoform differ in distinct recruitment of filament elongators, which then cause the 
observed phenotypes
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Adapted from Fäßler et al., 2023, doi.org/10.1126/sciadv.add6495
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Directional Microtubule arrays 
are central for persistent directional cell migration
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Adapted from Vaidžiulytė et al., 2022, doi.org/10.7554/eLife.69229
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Directional Golgi-derived Microtubule arrays 
are central for persistent directional cell migration
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Adapted from Vaidžiulytė et al., 2022, doi.org/10.7554/eLife.69229
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How are directional Microtubule arrays organized at the Golgi?
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Observation: Microtubule nucleation and elongation at the Golgi 
is spatially separated
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How could spatial separation of nucleation and elongation 
support direction Microtubule growth?
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What do we need to understand array formation at the Golgi?
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• Microtubule length and positioning at different states during their 
alignment

-> Cryo-ET and ultrastructural analysis

• MAP quantity and distribution on the Microtubules during the 
different states of alignment

-> Subtomogram averaging for identification of MAPs



Microtubule organization at the Golgi: General approach
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Adapted from Schaffer et al., 2015, doi/10.21769/bioprotoc.1575

Lamella preparation by focused ion beam milling (FIB)
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