The anti-hypertensive drug prazosin inhibits glioblastoma growth via the PKCδ-dependent inhibition of the AKT pathway.

Fiche publication


Date publication

mai 2016

Journal

EMBO molecular medicine

Auteurs

Membres identifiés du Cancéropôle Est :
Pr HAIECH Jacques, Dr ZENIOU-MEYER Maria


Tous les auteurs :
Assad Kahn S, Costa SL, Gholamin S, Nitta RT, Dubois LG, Fève M, Zeniou M, Coelho PL, El-Habr E, Cadusseau J, Varlet P, Mitra SS, Devaux B, Kilhoffer MC, Cheshier SH, Moura-Neto V, Haiech J, Junier MP, Chneiweiss H

Résumé

A variety of drugs targeting monoamine receptors are routinely used in human pharmacology. We assessed the effect of these drugs on the viability of tumor-initiating cells isolated from patients with glioblastoma. Among the drugs targeting monoamine receptors, we identified prazosin, an α1- and α2B-adrenergic receptor antagonist, as the most potent inducer of patient-derived glioblastoma-initiating cell death. Prazosin triggered apoptosis of glioblastoma-initiating cells and of their differentiated progeny, inhibited glioblastoma growth in orthotopic xenografts of patient-derived glioblastoma-initiating cells, and increased survival of glioblastoma-bearing mice. We found that prazosin acted in glioblastoma-initiating cells independently from adrenergic receptors. Its off-target activity occurred via a PKCδ-dependent inhibition of the AKT pathway, which resulted in caspase-3 activation. Blockade of PKCδ activation prevented all molecular changes observed in prazosin-treated glioblastoma-initiating cells, as well as prazosin-induced apoptosis. Based on these data, we conclude that prazosin, an FDA-approved drug for the control of hypertension, inhibits glioblastoma growth through a PKCδ-dependent mechanism. These findings open up promising prospects for the use of prazosin as an adjuvant therapy for glioblastoma patients.

Référence

EMBO Mol Med. 2016 05;8(5):511-26